a simple approach to order the multiplicative zagreb indices of connected graphs

نویسندگان

mehdi eliasi

چکیده

the first ($pi_1$) and the second $(pi_2$) multiplicative zagreb indices of a connected graph $g$, with vertex set $v(g)$ and edge set $e(g)$, are defined as $pi_1(g) = prod_{u in v(g)} {d_u}^2$ and $pi_2(g) = prod_{uv in e(g)} {d_u}d_{v}$, respectively, where ${d_u}$ denotes the degree of the vertex $u$. in this paper we present a simple approach to order these indices for connected graphs on the same number of vertices. moreover, as an application of this simple approach, we extend the known ordering of the first and the second multiplicative zagreb indices for some classes of connected graphs.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On multiplicative Zagreb indices of graphs

Todeschini et al. have recently suggested to consider multiplicative variants of additive graph invariants, which applied to the Zagreb indices would lead to the multiplicative Zagreb indices of a graph G, denoted by ( ) 1  G and ( ) 2  G , under the name first and second multiplicative Zagreb index, respectively. These are define as     ( ) 2 1 ( ) ( ) v V G G G d v and ( ) ( ) ( ) ( ) 2...

متن کامل

Zagreb, multiplicative Zagreb Indices and Coindices of ‎graphs

‎Let G=(V,E) be a simple connected graph with vertex set V and edge set E. The first, second and third Zagreb indices of G are respectivly defined by: $M_1(G)=sum_{uin V} d(u)^2, hspace {.1 cm} M_2(G)=sum_{uvin E} d(u).d(v)$ and $ M_3(G)=sum_{uvin E}| d(u)-d(v)| $ , where d(u) is the degree of vertex u in G and uv is an edge of G connecting the vertices u and v. Recently, the first and second m...

متن کامل

on multiplicative zagreb indices of graphs

todeschini et al. have recently suggested to consider multiplicative variants of additive graphinvariants, which applied to the zagreb indices would lead to the multiplicative zagrebindices of a graph g, denoted by ( ) 1  g and ( ) 2  g , under the name first and secondmultiplicative zagreb index, respectively. these are define as  ( )21 ( ) ( )v v gg g d vand ( ) ( ) ( )( )2 g d v d v gu...

متن کامل

zagreb, multiplicative zagreb indices and coindices of ‎graphs

‎let g=(v,e) be a simple connected graph with vertex set v and edge set e. the first, second and third zagreb indices of g are respectivly defined by: $m_1(g)=sum_{uin v} d(u)^2, hspace {.1 cm} m_2(g)=sum_{uvin e} d(u).d(v)$ and $ m_3(g)=sum_{uvin e}| d(u)-d(v)| $ , where d(u) is the degree of vertex u in g and uv is an edge of g connecting the vertices u and v. recently, the first and second m...

متن کامل

Comparing Zagreb indices for connected graphs

It was conjectured that for each simple graph G = (V , E) with n = |V (G)| vertices and m = |E(G)| edges, it holdsM2(G)/m ≥ M1(G)/n, whereM1 andM2 are the first and second Zagreb indices. Hansen and Vukičević proved that it is true for all chemical graphs and does not hold in general. Also the conjecture was proved for all trees, unicyclic graphs, and all bicyclic graphs except one class. In th...

متن کامل

Multiplicative Zagreb Indices of Trees

Let G be a graph with vertex set V (G) and edge set E(G) . The first and second multiplicative Zagreb indices of G are Π1 = ∏ x∈V (G) deg(x) 2 and Π2 = ∏ xy∈E(G) deg(x) deg(y) , respectively, where deg(v) is the degree of the vertex v . Let Tn be the set of trees with n vertices. We determine the elements of Tn , extremal w.r.t. Π1 and Π2 . AMS Mathematics Subject Classification (2000): 05C05, ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
transactions on combinatorics

ناشر: university of isfahan

ISSN 2251-8657

دوره 1

شماره 4 2012

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023